Stoichiometry Worksheet and Key

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

1. How many moles of O_{2} will be formed from 1.65 moles of KClO_{3} ?

$$
\begin{array}{l|l|}
1.65 \mathrm{~mol} \mathrm{KClO}_{3} & \ldots \mathrm{~mol} \mathrm{O}_{2} \\
\hline & \ldots \mathrm{~mol} \mathrm{KClO}_{3}
\end{array}=\left[\begin{array}{l}
\mathrm{mol} \mathrm{O}
\end{array}\right.
$$

2. How many moles of KClO_{3} are needed to make 3.50 moles of KCl ?

3. How many moles of KCl will be formed from 2.73 moles of KClO_{3} ?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

4. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 0.275 moles of Fe is reacted?

$$
\begin{array}{l|l|l}
0.275 \mathrm{~mol} \mathrm{Fe} & & =\ldots \mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
\end{array}
$$

5. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 31.0 moles of O_{2} is reacted?

$$
\begin{array}{l|l|}
& \\
& =
\end{array}
$$

6. How many moles of O_{2} are needed to react with 8.9 moles of Fe ?

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

7. How many moles of O_{2} are produced when 1.26 moles of $\mathrm{H}_{2} \mathrm{O}$ is reacted?
8. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are needed to produce 55.7 moles of H_{2} ?
9. If enough $\mathrm{H}_{2} \mathrm{O}$ is reacted to produce 3.40 moles of H_{2}, then how may moles of O_{2} must have been made? (a bit challenging, but just think about it and you can probably figure it out)

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

10. How many grams of O_{2} will be formed from 3.76 grams of KClO_{3} ?

$3.76 \mathrm{~g} \mathrm{KClO}_{3}$	$1 \mathrm{~mol} \mathrm{KClO}_{3}$	$\ldots \mathrm{~mol} \mathrm{O}_{2}$	$\ldots \mathrm{~g} \mathrm{O}_{2}$
	$122.55 \mathrm{~g} \mathrm{KClO}_{3}$	$\ldots \mathrm{~mol} \mathrm{KClO}_{3}$	$\ldots \mathrm{~mol} \mathrm{O}$

11. How many grams of KClO_{3} are needed to make 30.0 grams of KCl ?

30.0 g KCl	$\ldots \mathrm{mol} \mathrm{KCl}^{2}$	$\mathrm{~mol} \mathrm{KClO}_{3}$	$\ldots \mathrm{~g} \mathrm{KClO}_{3}$
	$\ldots \quad \mathrm{~g} \mathrm{KCl}$	$\ldots \mathrm{mol} \mathrm{KCl}$	$\ldots \mathrm{mol} \mathrm{KClO}_{3}$

12. How many grams of KCl will be formed from 2.73 g of KClO_{3} ?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

13. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 42.7 grams of Fe is reacted?

42.7 g Fe	\ldots	mol Fe	$\mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$
	\ldots	$\mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$	
	$\ldots \mathrm{~mol} \mathrm{Fe}$	$\mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$	

14. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 17.0 grams of O_{2} is reacted?

15. How many grams of O_{2} are needed to react with 125 grams of Fe ?

\qquad

Some cars can use butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ as fuel:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

16. How many grams of CO_{2} are produced from the combustion of 100 . grams of butane?

17. How many grams of O_{2} are needed to react with of 100 . grams of butane?

$100 . \mathrm{g} \mathrm{C}_{4} \mathrm{H}_{10}$				
				$=\quad \mathrm{g} \mathrm{O}_{2}$

18 How many grams of $\mathrm{H}_{2} \mathrm{O}$ are produced when 5.38 g of O_{2} is reacted?

KEY

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

1. How many moles of O_{2} will be formed from 1.65 moles of KClO_{3} ?

$1.65 \mathrm{~mol} \mathrm{KClO}_{3}$	$\underline{3} \mathrm{~mol} \mathrm{O}_{2}$
$\underline{2} \mathrm{~mol} \mathrm{KClO}$	

2. How many moles of KClO_{3} are needed to make 3.50 moles of KCl ?

3. How many moles of KCl will be formed from 2.73 moles of KClO_{3} ?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

4. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 0.275 moles of Fe are reacted?

$$
\begin{array}{c|c|}
0.275 \mathrm{~mol} \mathrm{Fe} & 2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \\
\hline & 4 \mathrm{~mol} \mathrm{Fe}
\end{array}=\underline{0.138} \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

5. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 31.0 moles of O_{2} are reacted?

$$
\begin{array}{c|c|}
31.0 \mathrm{~mol} \mathrm{O}_{2} & 2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \\
\hline & 3 \mathrm{~mol} \mathrm{O}_{2}
\end{array}=\underline{20.7} \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

6. How many moles of O_{2} are needed to react with 8.9 moles of Fe ?

8.9 mol Fe	$3 \mathrm{~mol} \mathrm{O}_{2}$
	4 mol Fe

7. How many moles of O_{2} are produced when 1.26 moles of $\mathrm{H}_{2} \mathrm{O}$ is reacted?

$1.26 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$1 \mathrm{~mol} \mathrm{O}_{2}$
	$2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

8. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are needed to produce 55.7 moles of H_{2} ?

$$
\begin{array}{l|l|}
55.7 \mathrm{~mol} \mathrm{H}_{2} & 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
\hline & 2 \mathrm{~mol} \mathrm{H}_{2}
\end{array}=55.7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

9. If enough $\mathrm{H}_{2} \mathrm{O}$ is reacted to produce 3.40 moles of H_{2}, then how may moles of O_{2} must have been made? (a bit challenging, but just think about it and you can probably figure it out)

$$
\begin{array}{l|l|}
3.40 \mathrm{~mol} \mathrm{H}_{2} & 1 \mathrm{~mol} \mathrm{O}_{2} \\
\hline & 2 \mathrm{~mol} \mathrm{H}_{2}
\end{array}=\underline{1.70} \mathrm{~mol} \mathrm{O}
$$

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

10. How many grams of O_{2} will be formed from 3.76 grams of KClO_{3} ?

$3.76 \mathrm{~g} \mathrm{KClO}_{3}$	$1 \mathrm{~mol} \mathrm{KClO}_{3}$	$\underline{3} \mathrm{~mol} \mathrm{O}_{2}$	$\underline{32.00 \mathrm{~g} \mathrm{O}_{2}}$
	$122.55 \mathrm{~g} \mathrm{KClO}_{3}$	$\underline{2} \mathrm{~mol} \mathrm{KClO}_{3}$	$\underline{1} \mathrm{~mol} \mathrm{O}$
2			

11. How many grams of KClO_{3} are needed to make 30.0 grams of KCl ?

30.0 g KCl	$\underline{1} \mathrm{~mol} \mathrm{KCl}$	$\underline{2} \mathrm{~mol} \mathrm{KClO}_{3}$	$\underline{122} .55 \mathrm{~g} \mathrm{KClO}^{2}$
	$\underline{74.55} \mathrm{~g} \mathrm{KCl}$	$\underline{2} \mathrm{~mol} \mathrm{KCl}$	$\underline{1} \mathrm{~mol} \mathrm{KClO}_{3}$

12. How many grams of KCl will be formed from $2.73 \mathrm{~g} \mathrm{of}^{\mathrm{KClO}}{ }_{3}$?

$2.73 \mathrm{~g} \mathrm{KClO}_{3}$	$\underline{1} \mathrm{~mol} \mathrm{KCl} \mathrm{O}_{3}$	$\underline{2} \mathrm{~mol} \mathrm{KCl}$	$\underline{74.55 \mathrm{~g}}$	
	$\underline{122.55} \mathrm{~g} \mathrm{KClO}_{3}$	$\underline{2} \mathrm{~mol} \mathrm{KCl} \mathrm{O}$	$\underline{1} \mathrm{~mol} \mathrm{KCl}$	1.66 g KCl

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

13. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 42.7 grams of Fe is reacted?

| 42.7 g Fe | $\underline{1} \mathrm{~mole} \mathrm{Fe}$ | $\underline{2} \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$ | $\underline{159} .70 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| | $\underline{55.85} \mathrm{~g} \mathrm{Fe}$ | $\underline{4} \mathrm{~mol} \mathrm{Fe}$ | $\underline{1} \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$ |$|=\underline{61.0} \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$

14. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 17.0 grams of O_{2} is reacted?

$17.0 \mathrm{~g} \mathrm{O}_{2}$	1 mol O	$\underline{2} \mathrm{~mol} \mathrm{Fe} \mathrm{O}_{3}$	$\underline{159.70 ~ g ~ F e 2 O}$		
	$32.00 \mathrm{~g} \mathrm{O}_{2}$	3 mol O	$1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$		56.6 g Fe

15. How many grams of O_{2} are needed to react with 125 grams of Fe ?

| 125 g Fe | $\underline{1 \mathrm{~mol} \mathrm{Fe}}$ | $\underline{3} \mathrm{~mol} \mathrm{O}_{2}$ | $\underline{32.00 \mathrm{~g} \mathrm{O}_{2}}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $\underline{55.85} \mathrm{~g} \mathrm{Fe}$ | $\underline{4} \mathrm{~mol} \mathrm{Fe}$ | $\underline{1} \mathrm{~mol} \mathrm{O}$ | $=\underline{53.7} \mathrm{~g} \mathrm{O}_{2}$ |

Some cars can use butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ as fuel:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

16. How many grams of CO_{2} are produced from the combustion of 100 . grams of butane?

$$
\begin{array}{l|l|l|l|}
100 . \mathrm{g} \mathrm{C}_{4} \mathrm{H}_{10} & 1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} & 8 \mathrm{~mol} \mathrm{CO}_{2} & 44.01 \mathrm{~g} \mathrm{CO}_{2} \\
\hline & 58.14 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10} & 2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} & 1 \mathrm{~mol} \mathrm{CO}_{2}
\end{array}=303 \mathrm{~g} \mathrm{CO}_{2}
$$

17. How many grams of O_{2} are needed to react with of 100 . grams of butane?

$$
\begin{array}{l|l|l|l|}
100 . \mathrm{g} \mathrm{C}_{4} \mathrm{H}_{10} & 1 \mathrm{~mol} \mathrm{C} \mathrm{C}_{4} \mathrm{H}_{10} & 13 \mathrm{~mol} \mathrm{O}_{2} & 32.00 \mathrm{~g} \mathrm{O}_{2} \\
\hline & 58.14 \mathrm{~g} \mathrm{C} \mathrm{C}_{4} \mathrm{H}_{10} & 2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} & 1 \mathrm{~mol} \mathrm{O}_{2}
\end{array}=358 \mathrm{~g} \mathrm{O}_{2}
$$

18 How many grams of $\mathrm{H}_{2} \mathrm{O}$ are produced when 5.38 g of O_{2} is reacted?

$5.38 \mathrm{~g} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{O}_{2}$	$10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
	$32.00 \mathrm{~g} \mathrm{O}_{2}$	$13 \mathrm{~mol} \mathrm{O}_{2}$	1 mol H

