Pearson 8 5 Form G is an excellent resource for students who are looking to improve their grammar skills. The exercises in this workbook are thorough and help students learn how to use proper grammar in both writing and speaking. Additionally, the answer key makes it easy to check your work and ensure that you are making progress.
You'll find information about the type of form you intend to submit in the table. It will tell you the time you'll need to finish pearson 8 5 form g, what fields you will need to fill in, and so forth.
Question | Answer |
---|---|
Form Name | Pearson 8 5 Form G |
Form Length | 3 pages |
Fillable? | No |
Fillable fields | 0 |
Avg. time to fill out | 45 sec |
Other names | prentice hall gold geometry 8 5 practice law of sines answers, 8 5 practice law of sines, 8 5 practice law of sines answer key, 8 5 law of sines form g answer key |
NameDateClass
|
Practice A |
LESSON |
|
Law of Sines and Law of Cosines |
|
|
Use a calculator to find each trigonometric ratio. Round to the nearest hundredth.
1. |
sin 168 |
|
2. |
cos 147 |
|
3. |
tan 107 |
||||
4. |
sin 97 |
|
|
5. |
cos 94 |
|
|
|
6. tan 140 |
||
7. |
sin 121 |
|
8. |
cos 170 |
|
9. |
tan 135 |
In Exercises 10 and 11, fill in the blanks to complete the theorems.
10.For any ABC with side lengths a, b, and c, ____sin A _______ _____sin C.
ab
11.For any ABC with side lengths a, b, and c, a 2 b 2 c 2 2bc cos A,
b 2 a 2 c 2 2ac |
|
, and |
|
a 2 b 2 2ab cos C. |
For Exercises 12 and 13, substitute numbers into the given Law of Sines ratio to find each measure. Round lengths to the nearest tenth and angle measures to the nearest degree.
12. |
# |
|
|
20 m |
% |
13. 0 |
|
6.2 cm |
2 |
|
|
47° |
|
|
|
|
|
||
|
|
|
|
109° |
|
3.5 cm |
70° |
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
$ |
|
|
|
||
|
|
|
|
|
1 |
|
|||
|
sin D |
sin C |
|
sin Q |
sin R |
|
|||
|
CE |
DE |
|
PR |
|
PQ |
|
||
|
DE |
|
|
|
|
mR |
|
|
|
Use the Law of Sines to find each measure. Round lengths to the nearest tenth and angle measures to the nearest degree.
14. |
|
& |
15. |
|
- |
7 ft |
|
|
50° |
||
|
|
|
|
||
|
|
|
|
5 cm |
|
$ 39° |
34° % |
. |
7 cm |
, |
|
|
|
|
|
|
|
EF |
|
|
mN |
|
|
For Exercises 16 and 17, substitute numbers into the Law of Cosines to find each measure. Round lengths to the nearest tenth and angle measures to the nearest degree.
16. 3 |
58° |
3.5 in. |
TU |
|
|
|
3 in. |
4 |
|
5
TU 2 ST 2 SU 2 2(ST )(SU )(cos S)
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
'
17.mH
8 yd
4.8 yd
)(
6.2yd
GI 2 GH 2 HI 2 2(GH )(HI )(cos H )
35 |
Holt Geometry |
|
Practice A |
|
|
|
|
|
|
|
|
|
|
|
Practice B |
|
|
|
|
|
|
|
|
|
|
||||||||
LESSON |
|
|
|
|
|
|
|
|
|
LESSON |
|
|
|
|
|
|
|
|
|
|
|||||||||||
Law of Sines and Law of Cosines |
|
|
|
|
Law of Sines and Law of Cosines |
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
Use a calculator to find each trigonometric ratio. Round to the nearest hundredth. |
|
Use a calculator to find each trigonometric ratio. Round to the nearest hundredth. |
|||||||||||||||||||||||||||||
1. |
sin 168 |
0.21 |
|
2. |
cos 147 |
0.84 |
|
|
3. tan 107 |
3.27 |
|
1. |
sin 111 |
0.93 |
|
|
2. |
cos 150 |
0.87 |
|
3. |
tan 163 |
0.31 |
|
|||||||
4. |
sin 97 |
0.99 |
|
5. |
cos 94 |
|
0.07 |
|
|
6. tan 140 |
0.84 |
|
|
|
|
|
|||||||||||||||
|
|
|
|
4. |
sin 92 |
|
1.00 |
|
|
5. |
cos 129 |
0.63 |
|
6. |
tan 99 |
|
6.31 |
|
|||||||||||||
7. |
sin 121 |
0.86 |
|
8. |
cos 170 |
0.98 |
|
|
9. tan 135 |
1.00 |
|
|
|
|
|
||||||||||||||||
|
|
|
|
7. |
sin 170 |
0.17 |
|
|
8. cos 96 |
|
0.10 |
|
9. |
tan 117 |
1.96 |
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In Exercises 10 and 11, fill in the blanks to complete the theorems.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Use the Law of Sines to find each measure. Round lengths to the nearest |
|
|
|
|
|||||||||||||||||||||
|
10. For any ABC with side lengths a, b, and c, sin A |
sin B |
|
sin C. |
tenth and angle measures to the nearest degree. |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
b |
|
|
c |
|
|
|
|
|
" |
|
|
|
|
|
|
|
% |
|
|
|
|
( |
|
|
|
|
|
|
|
||||
|
11. For any ABC with side lengths a, b, and c, a 2 b 2 c 2 2bc cos A, |
10. |
|
|
|
|
|
|
|
11. |
|
|
|
|
|
12. |
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
71° |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
c 2 a 2 b 2 2ab cos C. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
b 2 a 2 c 2 2ac cos B , and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 km |
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! |
40° |
25 m |
# |
|
|
& 45° |
3.8 in. |
63° $ |
|
|
|
|
) 116° 35° ' |
|
|||||||||||
|
For Exercises 12 and 13, substitute numbers into the given Law of Sines ratio |
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||
|
|
BC 17.0 m |
|
|
|
|
|
DE 2.8 in. |
|
|
|
|
GH 61.1 km |
|
|
|
|
||||||||||||||||||||||||||||||
|
to find each measure. Round lengths to the nearest tenth and angle measures |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
|
to the nearest degree. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
12. # |
47° |
20 m |
% |
|
|
|
13. |
0 |
6.2 cm |
2 |
|
|
|
|
13. , |
|
|
|
YD |
|
|
|
* |
14. |
0 |
|
|
|
|
15. |
|
|
|
|
3 |
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MI |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
3.5 cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16.9 ft |
24.7 ft |
|
|
|
|
|
|
|
||||||||
|
|
|
109° |
|
|
|
|
|
|
|
70° |
|
|
|
|
|
|
|
|
|
YD |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
||||||||||||||||
|
|
|
$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
2 |
43° |
|
|
|
|
|
|
MI |
|
|
|
|
||||||||
|
sin D sin C |
|
|
|
|
|
|
sin Q |
sin R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
CE |
DE |
|
|
|
|
|
|
|
PR |
PQ |
|
|
|
|
|
|
|
mJ |
55 |
|
|
|
|
|
mR |
85 |
|
|
|
|
mT |
18 |
|
|
|
|
||||||||||
|
|
|
15.5 |
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
DE |
|
|
|
|
|
|
|
mR |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
Use the Law of Sines to find each measure. Round lengths to the nearest |
Use the Law of Cosines to find each measure. Round lengths to the nearest |
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||
|
tenth and angle measures to the nearest degree. |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
tenth and angle measures to the nearest degree. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
14. |
|
& |
|
|
|
|
|
|
15. |
|
|
|
|
- |
|
|
|
|
|
16. |
4 ft |
9 |
|
|
|
|
17. " |
|
|
|
|
|
18. |
& |
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
50° |
|
|
|
|
|
8 |
52° |
|
|
|
|
|
|
|
|
|
$ |
|
|
|
|
|
|
|
|
|
|||||||||
|
|
7 ft |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 cm |
|
|
|
|
|
5.8 mi |
|
|
|
|
|
|||||||||
|
|
39° |
34° |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.3 cm |
|
|
% |
|
|||||||||
|
$ |
|
% |
|
|
|
|
|
. |
|
7 cm |
|
, |
|
|
|
|
|
|
|
|
7.6 ft |
|
|
|
|
|
|
|
87° |
|
|
|
|
112° |
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.3 mi |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
# |
|
|
|
|
|
|
|
' |
|||||||
|
EF |
|
7.9 ft |
|
|
|
|
|
|
mN |
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
YZ |
|
6.0 ft |
|
|
|
|
|
BD 3.7 cm |
|
EF 10.0 mi |
|
|
|
|
|||||||||||||||||
|
For Exercises 16 and 17, substitute numbers into the Law of Cosines to find |
|
|
35 |
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
|
19. |
|
|
|
) |
* |
20. |
|
|
20 ft |
|
- |
21. |
3 |
|
|
8.8 yd |
2 |
|
||||||||||||||||||||||||||||
|
each measure. Round lengths to the nearest tenth and angle measures to the |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
nearest degree. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
74.2 |
|
|
, |
|
|
|
|
10 ft |
|
9.4 yd |
|
6.2 yd |
|||||||||||||
|
|
|
|
3.2 in. |
|
|
|
|
|
|
|
|
|
|
|
92.4° |
|
|
|
|
|
|
|
|
|
|
|
15 ft |
|
|
|
|
|
|
|
|
|||||||||||
|
16. 3 |
58° |
3.5 in. TU |
|
17. |
8 yd |
' |
|
mH |
|
|
( |
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
1 |
|
|
|
|
||||||||||||||
|
|
4.8 yd |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
3 in. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
|
|
|
|
|
|
47 |
|
|
|
|
|
|
|
40 |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
) |
|
|
( |
|
|
|
|
|
|
|
mI |
|
|
|
|
|
|
mM |
|
|
|
|
mS |
|
|
|
|
||||||||||
|
5 |
|
|
|
|
|
|
|
|
|
|
6.2 yd |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
TU 2 ST 2 SU 2 2(ST )(SU )(cos S) |
|
GI 2 GH 2 HI 2 2(GH )(HI )(cos H ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
All rights reserved. |
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
Holt Geometry |
|
All rights reserved. |
|
|
|
|
|
|
|
|
36 |
|
|
|
|
|
|
|
Holt Geometry |
|||||||||||
|
Copyright © by Holt, Rinehart and Winston. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Copyright © by Holt, Rinehart and Winston. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
Practice C |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Review for Mastery |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
LESSON |
|
|
|
|
|
|
|
|
|
|
|
|
|
LESSON |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
Law of Sines and Law of Cosines |
|
|
|
|
|
|
|
|
|
Law of Sines and Law of Cosines |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The figure shows a 30 |
angle and a 150 |
angle in a coordinate |
i |
Y |
i |
You can use a calculator to find trigonometric ratios for obtuse angles. |
|
||||||||||||||||||
|
|
|
|
|
|
||||||||||||||||||||
plane. Notice the special triangles that the angles make with the |
|
|
|
|
|
|
|
sin 115 |
0.906307787 |
|
|
cos 270 0 |
tan 96 9.514364454 |
||||||||||||
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
1. Sketch a 60 angle and a 120 angle in a coordinate plane. |
|
|
|
|
|
|
X |
|
|
|
|
|
|
The Law of Sines |
|
|
|||||||||
Give the coordinates of the vertices of the special right |
i |
|
i |
|
For any ABC with side lengths a, b, and c that |
|
B |
||||||||||||||||||
|
c |
||||||||||||||||||||||||
triangles that the angles make with the |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
are opposite angles A, B, and C, respectively, |
A |
|
|||||||||||||||
hypotenuses a length of 1 unit. |
|
|
|
|
|
|
|
|
|
|
a |
||||||||||||||
|
|
|
|
SIN n |
|
SIN n |
|
|
|
|
sin A |
|
sin B |
|
sin C |
|
b |
|
|||||||
|
j |
|
|
|
j |
COS |
i |
COS |
|
i |
|
|
. |
|
|||||||||||
|
|
|
|
|
a |
|
c |
|
C |
||||||||||||||||
|
|
Y |
|
TAN |
i |
TAN |
|
i |
|
|
|
|
b |
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
Find mP. Round to the nearest degree. |
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sin P |
sin N |
Law of Sines |
M |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
MN |
PM |
7 in. |
10 in. |
|
|
|
|
|
|
|
|
|
|
|
|
|
sin P sin 36 |
|
|||
|
X |
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
MN 10, mN 36, PM 7 |
|
|
|||||||
|
|
|
|
|
|
|
|
|
10 in. |
7 in. |
|
36° |
N |
||
|
|
|
|
|
|
|
sin P 10 in.sin7 in.36 |
P |
|
||||||
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
3 |
; |
1 |
; |
3 |
Multiply both sides by 10 in. |
|
|
||||
2. Find the sine, cosine, and tangent of 60. |
|
sin P |
0.84 |
Simplify. |
|
|
|||||||||
|
|
|
|
|
|
2 |
|
2 |
|
|
|
|
|||
3. Find the sine, cosine, and tangent of 120. |
3 |
; |
|
1 |
; |
3 |
mP |
sin1 (0.84) |
Use the inverse sine function to find mP. |
|
|
||||
|
|
|
|
|
2 |
|
|
2 |
|
|
mP |
57 |
Simplify. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.Sketch a 45 angle and a 135 angle in a coordinate plane. Give the coordinates of the vertices of the special right triangles that the angles make with the
|
j |
j |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Use a calculator to find each trigonometric ratio. Round to the nearest |
||||||||||
|
Y |
|
|
j |
j |
|
|
|
|
|
|
hundredth. |
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
1. cos 104 |
|
2. tan 225 |
|
3. sin 100 |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.24 |
|
|
1 |
0.98 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
j |
|
|
j |
|
|
|
|
|
|
|
|
|
Find each measure. Round the length to the nearest tenth and the angle |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
measure to the nearest degree. |
|
|
|
||||||||||||
Give the hypotenuses a length of 1 unit. |
|
|
|
|
|
|
2 |
; |
2 |
; 1 |
|
4. TU |
|
|
|
5. mE |
|
|
|||||||||
5. Find the sine, cosine, and tangent of 45. |
|
|
|
|
|
|
|
T |
|
|
|
|
F |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
2 |
|
|
|
|
|
|
|
42 in. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
; |
|
2 |
; |
1 |
|
18 m |
|
|
|
26 in. |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
6. Find the sine, cosine, and tangent of 135. |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
2 |
|
64° |
41° |
|
|
|
102° |
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S |
U |
E |
G |
7.Make a conjecture about the sine of an angle, sin A, and the
cosine of the angle’s complement, cos (90 A). |
|
24.7 m |
37 |
|
Possible answer: The sine of an angle is equal to the cosine of the angle’s |
|
|||
|
|
|
|
|
complement: sin A cos (90 A). |
|
|
|
|
All rights reserved. |
37 |
Holt Geometry |
Copyright © by Holt, Rinehart and Winston. |
|
|
All rights reserved. |
38 |
Holt Geometry |
Copyright © by Holt, Rinehart and Winston. |
|
|
All rights reserved. |
59 |
Holt Geometry |
Copyright © by Holt, Rinehart and Winston. |
|
|